孙伟振
发布时间:2016-04-19   访问次数:20103   作者:


姓名:孙伟振

职称:教授(博士生导师)

地址:新葡的京集团4321实验十六楼509室(徐汇校区)

电话021-64253027

传真021-64253528

Emailsunwz@ecust.edu.cn

 

【教育背景】

       1995-1999 新葡的京集团4321,化学工艺本科

       2001-2004 新葡的京集团4321,化学工程硕士

       2005-2009 新葡的京集团4321,化学工程博士

 

工作经历

       19992001年,青岛钢铁集团公司润滑油厂任副厂长。

2004年至今,新葡的京集团4321化学工程联合国家重点实验室工作,历任助教、讲师、副教授、教授。

20122013年,美国加州大学伯克利分校化工系,跟随Berend Smit教授从事分子模拟研究。

 

【所获荣誉】

上海市技术发明一等奖(2014

中国石油和化学工业联合会科技进步一等奖(2018

 

【学术任职】

美国化学工程师学会(AIChE)高级会员

中国化工学会会员


【研究方向】


1、化工过程开发

大型工业反应器开发、化工过程强化与优化等,包括(1)气-液反应体系如芳烃(PXMX)氧化、国防材料聚酰亚胺单体合成等;(2)液-液反应体系如离子液体/硫酸催化C4烷基化合成高品质清洁汽油等;(3)高值精细化学品(日化产品、食品添加剂)的连续化工艺改造等。
2、多相反应表界面调控

研究多相反应(液-液、气-液、气-固、气--固)表界面上小分子的溶解、扩散、自组织等表界面特性,理解并指导反应过程的强化和催化剂设计。研究对象包括离子液体催化C4烷基化、烃类液相氧化、乙烷氧氯化等。

3、多尺度模拟计算

常规蒙特卡罗(MC)、分子动力学(MD)模拟以及基于反应力场的分子动力学(ReaxFF-MD)模拟(用于研究燃烧、裂解等快反应);复杂反应体系的动力学建模;反应器模拟;化工流程模拟。

4、材料化学工程

可控制备MOFZIFCOF等纳米多孔材料,研究其在化工分离、医学杀菌和载药、锂离子电池等方面的应用。合成各类新型离子液体(IL)用于催化反应和医学杀菌。

 

【代表性论文】(第一或通讯作者)

(一)多相表界面

1Promoting the Sulfuric Acid Catalyzed Isobutane Alkylation by Quaternary Ammonium Ionic Liquids. AIChE Journal, 2020, 66: e16979.

2Towards an Understanding of the Microstructure and Interfacial Properties of the Ionic Liquid/Sulfuric Acid Catalyst in Liquid-Liquid Reactions. Chemical Engineering Science, 2019, 205: 287-298.

3Probing Interfacial Behaviors of Brønsted Acidic Ionic Liquids Improved Isobutane Alkylation with C4 Olefin Catalyzed by Sulfuric Acid. Chemical Engineering Journal, 2019, 377: 119744.

4Experimental and Modeling Study of Isobutane Alkylation with C4 Olefin Catalyzed by Brønsted Acidic Ionic Liquid/Sulfuric Acid. Chemical Engineering Journal, 2019, 377: 119578.

5Understanding Structure-Property Relationship of SO3H-Functionalized Ionic Liquids together with Sulfuric Acid in Catalyzing Isobutane Alkylation with C4 Olefin. Industrial & Engineering Chemistry Research, 2018, 57: 15310-15318.

6Microstructures of the Sulfonic Acid-Functionalized Ionic Liquid/Sulfuric Acid and Their Interactions: A Perspective from the Isobutane Alkylation. Journal of Physical Chemistry B, 2018, 122: 1460-1470.

7Understanding Interfacial Behaviors of Isobutane Alkylation with C4 Olefin Catalyzed by Sulfuric Acid or Ionic Liquids. AIChE Journal, 2018, 64: 950-960.

8Screening of Imidazolium Ionic Liquids for the Isobutane Alkylation Based on Molecular Dynamic Simulation. Chemical Engineering Science, 2018, 183: 115-122.

9Modeling of the Interfacial Behaviors for the Isobutane Alkylation with C4 Olefin Using Ionic Liquid as Catalyst. Chemical Engineering Science, 2017, 166: 42-52.

 

(二)反应动力学、反应器

10Multiscale Modeling of Isobutane Alkylation with Mixed C4 Olefins Using Sulfuric Acid as Catalyst. Industrial & Engineering Chemistry Research, 2019, 58: 6340-6349.

11Multi-Scale Modeling of Isobutane Alkylation with 2-Butene Using Composite Ionic Liquids as Catalyst. Chemical Engineering Science, 2018, 186: 209-218.

12Experimental Study and Modeling of Homogenous Catalytic Oxidation of m-Xylene to Isophthalic Acid. Industrial & Engineering Chemistry Research, 2015, 54: 3293-3298.

13Modeling of CO2-assisted Liquid Phase Oxidation of para-Xylene Catalyzed by Transition Met/Bromide. Chemical Engineering Science, 2015, 127: 52-59.

14Liquid Phase Oxidation of Alkyl Aromatics at Low Oxygen Partial Pressures. Chemical Engineering Journal, 2015, 278: 533-540.

15Alkylation Kinetics of Isobutane by C4 Olefins Using Sulfuric Acid as Catalyst. Industrial & Engineering Chemistry Research, 2013, 52: 15262-15269.

16Simulation of Secondary Oxidation of p-Xylene in Liquid Phase. Industrial & Engineering Chemistry Research. 2011, 50: 2548-2553.

 

(三)材料化学工程(多孔材料、离子液体)

17Killing Oral Bacteria Using Metal-Organic Frameworks. Industrial & Engineering Chemistry Research, 2020, 59: 1559-1567.

18Insight into the Structure-Antibacterial Activity of Amino Cation-Based and Acetate Anion-Based Ionic Liquids from Computational Interactions with the POPC Phospholipid Bilayer. Physical Chemistry Chemical Physics, 2020, 22: 15573-15581.

19Controllable Preparation of Nanoscale Metal–Organic Frameworks by Ionic Liquid Microemulsions. Industrial & Engineering Chemistry Research, 2017, 56: 5899-5905.

20Synthesis of ZIF-8 and ZIF-67 Nanocrystals with Well-Controllable Size Distribution Through Reverse Microemulsions. Chemical Engineering Journal, 2016, 289: 59-64.

21Computational Screening of Porous Metal-Organic Frameworks and Zeolites for the Removal of SO2 and NOx from Flue Gases. AIChE Journal, 2014, 60: 2314-2323.

 

(四)燃烧与裂解反应

22Initial Mechanism and Kinetics of Diesel Incomplete Combustion: ReaxFF Molecular Dynamics Based on a Multicomponent Fuel Model. Journal of Physical Chemistry C. 2019, 123: 8512-8521.

23Combustion Mechanisms and Kinetics of Fuel Additives: A ReaxFF Molecular Simulation. Energy & Fuels. 2018, 32: 11852-11863.

24Molecular Simulation of the Catalytic Cracking of Hexadecane on ZSM-5 Catalysts Based on Reactive Force Field (ReaxFF). Energy & Fuels. 2017, 31: 10515-10524.

25High-Temperature and High-Pressure Pyrolysis of Hexadecane: Molecular Dynamic Simulation Based on Reactive Force Field (ReaxFF). Journal of Physical Chemistry A. 2017, 121: 2069-2078.

 

【代表性项目】
1)离子液体催化烷基化反应液-液两相表界面的介尺度机制及调控(国家自然科学基金),80万元

2)大型精间苯二甲酸生产装置工艺开发(中国石油),360万元

3)环己基苯过氧化工艺优化及反应动力学研究(中国石化),150万元

4)非裂解法烷基化废酸再生利用技术开发(中国石化),130万元

5)吡啶酮类香料工业装置连续化工艺开发(爱普香料集团),250万元